Steady-State Modulation of Voltage-Gated K+ Channels in Rat Arterial Smooth Muscle by Cyclic AMP-Dependent Protein Kinase and Protein Phosphatase 2B

نویسندگان

  • Jennifer L. Brignell
  • Matthew D. Perry
  • Carl P. Nelson
  • Jonathon M. Willets
  • R. A. John Challiss
  • Noel W. Davies
چکیده

Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin II inhibits and alters kinetics of voltage-gated K(+) channels of rat arterial smooth muscle.

The vasoconstrictor angiotensin II (ANG II) inhibits several types of K(+) channels. We examined the inhibitory mechanism of ANG II on voltage-gated K(+) (K(V)) currents (I(K(V))) recorded from isolated rat arterial smooth muscle using patch-clamp techniques. Application of 100 nM ANG II accelerated the activation of I(K(V)) but also caused inactivation. These effects were abolished by the AT(1...

متن کامل

Nitric oxide suppresses vascular voltage-gated T-type Ca channels through cGMP/PKG signaling

Harraz OF, Brett SE, Welsh DG. Nitric oxide suppresses vascular voltage-gated T-type Ca channels through cGMP/PKG signaling. Am J Physiol Heart Circ Physiol 306: H279–H285, 2014. First published November 15, 2013; doi:10.1152/ajpheart.00743.2013.— Recent reports have noted that T-type Ca channels (CaV3.x) are expressed in vascular smooth muscle and are potential targets of regulation. In this s...

متن کامل

Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase.

Nitric oxide (NO)-induced relaxation is associated with increased levels of cGMP in vascular smooth muscle cells. However, the mechanism by which cGMP causes relaxation is unknown. This study tested the hypothesis that activation of Ca-sensitive K (KCa) channels, mediated by a cGMP-dependent protein kinase, is responsible for the relaxation occurring in response to cGMP. In rat pulmonary artery...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015